Principal Investigator

Prof. Dr. Thomas Roeder

Vita

Education/Training

2000
Habilitation

1988 – 1991
PhD at the Center for Molecular Neurobiology, University of Hamburg

1981 – 1987
Studies in Biology and Physics, University of Hamburg, Diploma degree in Biology


Research Experience/Academic Appointments

Since 2005
Professor (C3) in Zoology, Christian-Albrechts-University of Kiel

2004
Professor (C3) in Zoophysiology, University of Muenster

2004
Research Group Leader, Genomics of model organisms, Foundation lectureship of the Claussen-Simon-Stiftung “Stifterverband der deutschen Wirtschaft”, University of Marburg

2001 – 2003
Research Scientist, University of Wuerzburg

1997 – 2001
Research Scientist, Zoological Institute, University of Hamburg

1991 – 1997
Research Assistant, Zoological Institute, University of Hamburg


Important Scientific Prizes/Functions

Since 2016
Member of the examination board “Zoology” of the DFG (German research Foundation)

Since 2016
Member of the Scientific Advisory Board of the LOEWE Center Insect Biotechnology, Giessen, Germany

Since 2016
Member of the SFB 1182

2013 – 2016
Chairman of the Department of Biology (CAU Kiel)

2011 – 2013
Member of the directorate of the Excellence Cluster Inflammation@Interfaces

2011 – 2013
Managing director of the Zoological Institute (CAU Kiel)

2009 – 2011
Chairman of the Department of Biology (CAU Kiel)

2005 – 2015
Member of the Transregio SFB TR22

2004
Foundation lectureship of the „Stiftung der deutschen Wirtschaft“

Associated Research Groups

Prof. Dr. Thomas Roeder
Publications

Publications

Filter by

Year All
2024
C4

The archaeome in metaorganism research, with a focus on marine models and their bacteria– archaea interactions

von Hoyningen-Huene AJE, Bang C, Rausch P, Rühlemann M, Fokt H, He J, Jensen N, Knop M, Petersen C, Schmittmann L, Zimmer T, Baines JF, Bosch TCG, Hentschel U, Reusch TBH, Roeder T, Franke A, Schulenburg H, Stukenbrock E and Schmitz RA (2024) The archaeome in metaorganism research, with a focus on marine models and their bacteria– archaea interactions. Front Microbiol, 15:1347422. doi: 10.3389/fmicb.2024.1

2023
A2
C2
Z3

A mitochondrial sirtuin shapes the intestinal microbiota by controlling lysozyme expression

Knop M, Treitz C, Bettendorf S, Bossen J, von Frieling J, Doms S, Bruchhaus I, Kuehnlein RP, Baines JF, Tholey A, Roeder T (2023) A mitochondrial sirtuin shapes the intestinal microbiota by controlling lysozyme expression. bioRxiv, doi: https://doi.org/10.1101/2023.06.02.543385

2023
C2

Hemocytes and fat body cells, the only professional immune cell types in Drosophila, show strikingly different responses to systemic infections.

 Vaibhvi V, Kuenzel S, Roeder T (2022) Hemocytes and fat body cells, the only professional immune cell types in Drosophila, show strikingly different responses to systemic infections. Frontiers Immunology 13, 1040510, doi: 10.3389/fimmu.2022.1040510.

 

2023
A1
C2

Recurrent phases of strict protein limitation inhibit tumor growth and restore lifespan in a Drosophila intestinal cancer model.

Pfefferkorn RM, Mortzfeld BM, Fink C, von Frieling JBossen J, Esser D, Kaleta CRosenstiel P, Heine H, Roeder T (2023) Recurrent phases of strict protein limitation inhibit tumor growth and restore lifespan in a Drosophila intestinal cancer model. Aging&Disease in press.

2023
C2

The tracheal immune system of insects – a blueprint for understanding epithelial immunity.

Bossen J, Kühle, J-P, Roeder T (2023) The tracheal immune system of insects – a blueprint for understanding epithelial immunity. Insect Biochem Mol Biol 157, 103960. https://doi.org/10.1016/j.ibmb.2023.103960

2023
A2
A4
C1
C2

The microbiome of the marine flatworm Macrostomum lignano provides fitness advantages and exhibits circadian rhythmicity

Ma YHe JSieber Mvon Frieling J, Bruchhaus I, Baines JF, Bickmeyer U, Roeder T (2023) The microbiome of the marine flatworm Macrostomum lignano provides fitness advantages and exhibits circadian rhythmicity. Communications Biology 6: 289. https://doi.org/10.1038/s42003-023-04671-y.

2023
A2
C2
Z3

A mitochondrial sirtuin shapes the intestinal microbiota by controlling lysozyme expression

Knop M, Treitz C, Bettendorf S, Bossen J, von Frieling J, Doms S, Bruchhaus I, Kuehnlein RP, Baines JF, Tholey ARoeder T (2023) A mitochondrial sirtuin shapes the intestinal microbiota by controlling lysozyme expression. bioRxiv, doi: https://doi.org/10.1101/2023.06.02.543385

2022
C2

An aqueous extract of the brown alga Eisenia bicyclis extends lifespan in a sex-specific manner by interfering with the Tor-FoxO axis.

Tahanzadeh NKnop M, Seidler Y, Dirndorfer S, Lürsen K, Bruchhaus I, Lang R, Rimbach G, Roeder T (2022) An aqueous extract of the brown alga Eisenia bicyclis extends lifespan in a sex-specific manner by interfering with the Tor-FoxO axis. Aging 14, doi.org/10.18632/aging.204218.

 

2021
C2

Low-protein diet applied as part of combination therapy or standalone normalizes lifespan and tumor proliferation in a model of intestinal cancer

Proske A, Bossen J,  von Frieling J, Roeder T (2021) Aging (Albany NY). 13(21):24017-24036. doi: 10.18632/aging.203692.

2021
C2

Constitutive immune activity promotes JNK- and FoxO-dependent remodeling of Drosophila airways.

Wagner C, Uliczka K, Bossen J, Niu X, Fink C, Thiedmann M, Knop M, Vock C, Abdelsadik A, Zissler UM, Isermann K, Garn H, Pieper M, Wegmann M, Koczulla AR, Vogelmeier CF, Schmidt-Weber CB, Fehrenbach H, König P, Silverman N, Renz H, Pfefferle P, Heine H, Roeder T (2021) Cell Reports 35(1): 108956, doi: 10.1016/j.celrep.2021.108956.

2020
C2

A high-fat diet induces a microbiota-dependent increase in stem cell activity in the Drosophila intestine.

von Frieling J, Faisal MN, Sporn F, Pfefferkorn R, Nolte SS, Sommer F, Rosenstiel P, Roeder T (2020) PLoS Genet. 16(5):e1008789. doi: 10.1371/journal.pgen.1008789

2020
C2

Furbellow (brown algae) extract increases lifespan Drosophila by interfering with TOR-signalling.

Li Y, Romey-Glüsing R, Tahan Zadeh T, von Frieling J, Hoffmann J, Huebbe P, Bruchhaus I, Rimbach G, Fink C, Roeder T (2020) Nutrients. 12:1172, doi:10.3390/nu12041172

2020
C2

Factors that affect the translation of dietary restriction into a longer life

von Frieling J, Roeder T (2020) IUBMB Life. 72: 814–824. doi: 10.1002/iub.2224

2019
A1
A2
A3
B1
B2
C1
C2
INF
Z3

Comparative analysis of amplicon and metagenomic sequencing methods reveals key features in the evolution of animal metaorganisms

Rausch P, Rühlemann M, Hermes BM, Doms S, Dagan T, Dierking K, Domin H, Fraune S, von Frieling J, Hentschel U, Heinsen F-A, Höppner M, Jahn MT, Jaspers C, Kissoyan KAB, Langfeldt D, Rehman A, Reusch TBH, Roeder T, Schmitz RA, Schulenburg H, Soluch R, Sommer F, Stukenbrock E, Weiland-Bräuer N, Rosenstiel P, Franke A, Bosch T, Baines JF (2019) Microbiome, doi: 10.1186/s40168-019-0743-1

2019
C2

Drosophila melanogaster in nutrition research—the importance of standardizing experimental diets

Lüersen K, Roeder T, Rimbach G (2019) Genes Nutr. 14: 3. doi: 10.1186/s12263-019-0627-9

2018
C2
Z3

A Drosophila model of cigarette smoke induced COPD identifies Nrf2 signaling as an expedient target for intervention.

Prange R, Thiedmann M, Bhandari A, Mishra N, Sinha A, Häsler R, Rosenstiel P, Uliczka K, Wagner C, Yildirim AÖ, Fink C, Roeder T (2018); Aging (Albany NY). 10(8):2122-2135. doi: 10.18632/aging.101536

2018
C2

Impaired Wnt signaling in dopamine containing neurons is associated with pathogenesis in a rotenone triggered Drosophila Parkinson’s disease model.

Stephano F, Nolte S, Hoffmann J, El-Kholy S, von Frieling J, Bruchhaus I, Fink C, Roeder T (2018); Sci Rep. 8(1):2372. doi: 10.1038/s41598-018-20836-w

2018
A4
C1
C2
Z1
Z3

Grow With the Challenge – Microbial Effects on Epithelial Proliferation, Carcinogenesis, and Cancer Therapy

Von Frieling J, Fink C, Hamm J, Klischies K, Forster M, Thomas C. G. Bosch TCG, Roeder T, P Rosenstiel P, Sommer F (2018); Front. Microbiol. doi: 10.3389/fmicb.2018.02020

2018
C2

Nutritional regimens with periodically recurring phases of dietary restriction extend lifespan in Drosophila.

Romey-Glüsing R, Li Y, Hoffmann J, von Frieling J, Knop M, Pfefferkorn R, Bruchhaus I, Fink C, Roeder T (2018); FASEB J., 5:fj201700934R. doi: 10.1096/fj.201700934R

2017
C2

Drosophila Fecal Sampling.

Christine Fink, Jakob von Frieling, Mirjam Knop, Thomas Roeder (2017); Bio-protocols, 7(18):e2547. doi: 10.21769/BioProtoc.2547

2017
C2

The Role of Monoaminergic Neurotransmission for Metabolic Control in the Fruit Fly Drosophila Melanogaster.

Li Y, Tiedemann L, von Frieling J, Nolte S, El-Kholy S, Stephano F, Gelhaus C, Bruchhaus I, Fink C, Roeder T (2017); Front. Syst. Neurosci., 11:60. doi: 10.3389/fnsys.2017.00060

2016
C2

Octopamine controls starvation resistance, life span and metabolic traits in Drosophila.

Li Y, Hoffmann J, Li Y, Stephano F, Bruchhaus I, Fink C, Roeder T (2016); Sci Rep., 6:35359. doi: 10.1038/srep35359

2016
C2

Intestinal FoxO signaling is required to survive oral infection in Drosophila.

Fink C, Hoffmann J, Knop M, Li Y, Isermann K, Roeder T (2016); Mucosal Immunol., 9:927-936. doi: 10.1038/mi.2015.112

Institutions & Partners